## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 1)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t )y'= {\left(t^{2} + 6 \, t + 5\right)} y - 2 \, t\hspace{2em}y( 7 )= -4$

$( 4 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 2)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t + 4 )y'= {\left(t^{2} + 5 \, t + 4\right)} y + 2 \, t\hspace{2em}y( -2 )= 5$

$(-\infty, 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 3)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 6 )y'= -2 \, t^{3} + {\left(t^{2} - 3 \, t\right)} y\hspace{2em}y( 7 )= 2$

$( 3 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 4)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 2 )y'= {\left(t^{2} + 3 \, t - 4\right)} y - 2 \, t\hspace{2em}y( 3 )= 1$

$( 2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 5)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 5 )y'= {\left(t^{2} + 5 \, t + 6\right)} y - t\hspace{2em}y( -4 )= -1$

$( -5 , -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 6)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 7 \, t + 6 )y'= {\left(t^{2} + 4 \, t + 4\right)} y + 3 \, t\hspace{2em}y( 8 )= 2$

$( 6 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 7)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t )y'= {\left(t^{2} - 5 \, t\right)} y\hspace{2em}y( 8 )= 3$

$( 5 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 8)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 7 \, t + 6 )y'= {\left(t^{2} + 3 \, t - 4\right)} y + t\hspace{2em}y( 10 )= 1$

$( 6 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 9)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 2 )y'= 3 \, t^{3} + {\left(t^{2} + t - 2\right)} y\hspace{2em}y( -3 )= 0$

$(-\infty, -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 10)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t + 4 )y'= {\left(t^{2} + 6 \, t + 5\right)} y\hspace{2em}y( 5 )= -3$

$( 4 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 11)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 2 )y'= -t^{2} + {\left(t^{2} + 8 \, t + 16\right)} y\hspace{2em}y( -3 )= -2$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 12)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 )y'= 3 \, t^{3} + {\left(t^{2} - 4 \, t\right)} y\hspace{2em}y( 1 )= -2$

$( -2 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 13)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= {\left(t^{2} + 2 \, t - 8\right)} y\hspace{2em}y( -6 )= -5$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 14)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 8 \, t + 15 )y'= 2 \, t^{3} + {\left(t^{2} - t - 12\right)} y\hspace{2em}y( -4 )= -2$

$( -5 , -3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 15)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t - 3 )y'= -2 \, t^{2} + {\left(t^{2} + t - 6\right)} y\hspace{2em}y( 0 )= 2$

$( -1 , 3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 16)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t - 3 )y'= -3 \, t^{2} + {\left(t^{2} + 2 \, t - 15\right)} y\hspace{2em}y( -7 )= -5$

$(-\infty, -3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 17)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 2 )y'= {\left(t^{2} - 4 \, t\right)} y + 3 \, t\hspace{2em}y( 0 )= -3$

$( -2 , 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 18)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t + 4 )y'= {\left(t^{2} + t - 2\right)} y - 2 \, t\hspace{2em}y( 6 )= 2$

$( 4 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 19)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= -t^{2} + {\left(t^{2} - 5 \, t\right)} y\hspace{2em}y( -5 )= 1$

$(-\infty, -3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 20)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t - 3 )y'= 3 \, t^{2} + {\left(t^{2} - 4 \, t + 3\right)} y\hspace{2em}y( 2 )= -3$

$( 1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 21)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= {\left(t^{2} + 2 \, t - 3\right)} y\hspace{2em}y( 0 )= 2$

$( -2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 22)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 5 \, t + 4 )y'= t^{2} + {\left(t^{2} + 8 \, t + 16\right)} y\hspace{2em}y( 3 )= 0$

$( -1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 23)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 8 \, t + 15 )y'= -3 \, t^{2} + {\left(t^{2} + 6 \, t + 8\right)} y\hspace{2em}y( -2 )= 1$

$( -3 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 24)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= {\left(t^{2} + t - 2\right)} y\hspace{2em}y( 4 )= -3$

$( 2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 25)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 6 )y'= {\left(t^{2} - 8 \, t + 15\right)} y - 2 \, t\hspace{2em}y( 2 )= -3$

$( -2 , 3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 26)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 6 \, t + 5 )y'= 3 \, t^{2} + {\left(t^{2} + 2 \, t - 15\right)} y\hspace{2em}y( 4 )= 4$

$( 1 , 5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 27)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= -2 \, t^{3} + {\left(t^{2} - 3 \, t - 10\right)} y\hspace{2em}y( -7 )= -5$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 28)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 6 )y'= t^{2} + {\left(t^{2} - t - 6\right)} y\hspace{2em}y( -6 )= 3$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 29)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t )y'= {\left(t^{2} + 7 \, t + 10\right)} y + t\hspace{2em}y( 2 )= -3$

$( 0 , 4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 30)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= -3 \, t^{2} + {\left(t^{2} + 2 \, t - 15\right)} y\hspace{2em}y( 3 )= 3$

$( 2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 31)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 5 )y'= -t^{2} + {\left(t^{2} + 4 \, t - 5\right)} y\hspace{2em}y( 1 )= 0$

$( -1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 32)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 )y'= {\left(t^{2} - 6 \, t + 9\right)} y + 2 \, t\hspace{2em}y( -6 )= 1$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 33)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 7 \, t + 10 )y'= 2 \, t^{3} + {\left(t^{2} - 6 \, t + 9\right)} y\hspace{2em}y( -8 )= 1$

$(-\infty, -5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 34)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 3 \, t - 4 )y'= 2 \, t^{2} + {\left(t^{2} + 3 \, t + 2\right)} y\hspace{2em}y( 8 )= -1$

$( 4 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 35)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= {\left(t^{2} - 5 \, t\right)} y\hspace{2em}y( 5 )= 3$

$( 1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 36)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 3 \, t )y'= {\left(t^{2} + 3 \, t\right)} y + 3 \, t\hspace{2em}y( 1 )= -1$

$( 0 , 3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 37)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t )y'= {\left(t^{2} - 3 \, t - 10\right)} y + t\hspace{2em}y( 2 )= -5$

$( 0 , 4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 38)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= {\left(t^{2} + 2 \, t - 15\right)} y - 3 \, t\hspace{2em}y( -8 )= -5$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 39)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t )y'= {\left(t^{2} - t - 2\right)} y - t\hspace{2em}y( -1 )= 5$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 40)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t )y'= -2 \, t^{3} + {\left(t^{2} + 8 \, t + 16\right)} y\hspace{2em}y( -1 )= -5$

$( -3 , 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 41)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= 3 \, t^{2} + {\left(t^{2} - t - 12\right)} y\hspace{2em}y( 1 )= 2$

$( -3 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 42)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= -2 \, t^{2} + {\left(t^{2} - 6 \, t + 9\right)} y\hspace{2em}y( -1 )= -5$

$( -3 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 43)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 4 \, t )y'= {\left(t^{2} - t - 2\right)} y + 3 \, t\hspace{2em}y( -1 )= 5$

$( -4 , 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 44)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 8 \, t + 15 )y'= {\left(t^{2} + 10 \, t + 25\right)} y - 3 \, t\hspace{2em}y( -4 )= 3$

$( -5 , -3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 45)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t )y'= 2 \, t^{2} + {\left(t^{2} + 3 \, t - 10\right)} y\hspace{2em}y( -2 )= -3$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 46)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= 3 \, t^{2} + {\left(t^{2} + 3 \, t + 2\right)} y\hspace{2em}y( 3 )= -4$

$( 2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 47)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 3 \, t )y'= 2 \, t^{2} + {\left(t^{2} + 7 \, t + 10\right)} y\hspace{2em}y( -2 )= -4$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 48)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 4 \, t )y'= {\left(t^{2} - 6 \, t + 8\right)} y - 2 \, t\hspace{2em}y( 3 )= -5$

$( 0 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 49)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t )y'= -2 \, t^{3} + {\left(t^{2} + 4 \, t + 3\right)} y\hspace{2em}y( -6 )= 3$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 50)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t )y'= t^{3} + {\left(t^{2} - 5 \, t + 4\right)} y\hspace{2em}y( -1 )= -2$

$( -2 , 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 51)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 5 \, t + 4 )y'= {\left(t^{2} - 2 \, t + 1\right)} y\hspace{2em}y( 3 )= -5$

$( -1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 52)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + t - 6 )y'= {\left(t^{2} - 6 \, t + 5\right)} y - 2 \, t\hspace{2em}y( 0 )= 1$

$( -3 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 53)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t )y'= {\left(t^{2} - 16\right)} y\hspace{2em}y( 1 )= 2$

$( 0 , 4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 54)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t - 3 )y'= t^{2} + {\left(t^{2} - 3 \, t\right)} y\hspace{2em}y( 4 )= 0$

$( 3 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 55)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 7 \, t + 6 )y'= -t^{3} + {\left(t^{2} + 6 \, t + 8\right)} y\hspace{2em}y( 3 )= 5$

$( 1 , 6 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 56)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 1 )y'= {\left(t^{2} - 4 \, t + 3\right)} y - t\hspace{2em}y( -5 )= -5$

$(-\infty, -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 57)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 1 )y'= 2 \, t^{3} + {\left(t^{2} - 5 \, t + 6\right)} y\hspace{2em}y( 0 )= 1$

$( -1 , 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 58)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 2 )y'= -3 \, t^{3} + {\left(t^{2} + 7 \, t + 10\right)} y\hspace{2em}y( -2 )= -4$

$(-\infty, -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 59)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= -t^{3} + {\left(t^{2} - t - 6\right)} y\hspace{2em}y( 0 )= -5$

$( -2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 60)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 5 \, t + 4 )y'= {\left(t^{2} + 7 \, t + 10\right)} y - 2 \, t\hspace{2em}y( -2 )= 0$

$( -4 , -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 61)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 5 \, t )y'= 3 \, t^{2} + {\left(t^{2} - t - 6\right)} y\hspace{2em}y( 3 )= -1$

$( 0 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 62)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 7 \, t + 10 )y'= {\left(t^{2} + 2 \, t - 3\right)} y + 2 \, t\hspace{2em}y( -7 )= -3$

$(-\infty, -5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 63)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t )y'= -t^{2} + {\left(t^{2} + 3 \, t\right)} y\hspace{2em}y( -2 )= -4$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 64)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 6 \, t + 5 )y'= {\left(t^{2} + 2 \, t - 15\right)} y - t\hspace{2em}y( 4 )= -5$

$( 1 , 5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 65)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 3 \, t )y'= {\left(t^{2} + t - 2\right)} y - 2 \, t\hspace{2em}y( 7 )= 2$

$( 3 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 66)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t )y'= t^{3} + {\left(t^{2} + t - 20\right)} y\hspace{2em}y( -4 )= -1$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 67)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 7 \, t + 6 )y'= {\left(t^{2} - 16\right)} y + 2 \, t\hspace{2em}y( 7 )= 2$

$( 6 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 68)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= 3 \, t^{2} + {\left(t^{2} - 5 \, t + 4\right)} y\hspace{2em}y( -8 )= 2$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 69)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 )y'= 3 \, t^{2} + {\left(t^{2} + 3 \, t\right)} y\hspace{2em}y( -1 )= -1$

$( -2 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 70)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t + 4 )y'= {\left(t^{2} - 16\right)} y + t\hspace{2em}y( -2 )= -5$

$(-\infty, 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 71)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 3 \, t )y'= t^{3} + {\left(t^{2} - t - 20\right)} y\hspace{2em}y( -1 )= 1$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 72)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t )y'= -3 \, t^{2} + {\left(t^{2} + t - 6\right)} y\hspace{2em}y( 2 )= -2$

$( 0 , 5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 73)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t - 3 )y'= t^{2} y + 2 \, t\hspace{2em}y( 2 )= -1$

$( -1 , 3 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 74)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 4 \, t )y'= -t^{3} + {\left(t^{2} + 4 \, t\right)} y\hspace{2em}y( 2 )= 5$

$( 0 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 75)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t )y'= {\left(t^{2} - 9\right)} y + 3 \, t\hspace{2em}y( 3 )= -1$

$( 0 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 76)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 6 \, t + 5 )y'= 3 \, t^{2} + {\left(t^{2} - 3 \, t\right)} y\hspace{2em}y( 4 )= 5$

$( 1 , 5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 77)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 7 \, t + 6 )y'= -2 \, t^{3} + {\left(t^{2} - 8 \, t + 15\right)} y\hspace{2em}y( 2 )= -2$

$( 1 , 6 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 78)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= 3 \, t^{2} + {\left(t^{2} + 3 \, t - 10\right)} y\hspace{2em}y( -5 )= 5$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 79)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t )y'= -3 \, t^{2} + {\left(t^{2} + 5 \, t + 6\right)} y\hspace{2em}y( -2 )= -3$

$( -3 , 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 80)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 5 \, t )y'= {\left(t^{2} + 5 \, t\right)} y + 2 \, t\hspace{2em}y( 4 )= 4$

$( 0 , 5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 81)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t + 3 )y'= {\left(t^{2} - 9\right)} y\hspace{2em}y( 0 )= -3$

$(-\infty, 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 82)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t )y'= 3 \, t^{2} + {\left(t^{2} + 4 \, t + 3\right)} y\hspace{2em}y( 1 )= -4$

$( 0 , 2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 83)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= -t^{3} + {\left(t^{2} + t\right)} y\hspace{2em}y( -5 )= -4$

$(-\infty, -4 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 84)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 2 )y'= {\left(t^{2} + t - 6\right)} y\hspace{2em}y( -4 )= -2$

$(-\infty, -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 85)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t )y'= {\left(t^{2} + 2 \, t - 8\right)} y - 3 \, t\hspace{2em}y( -1 )= 3$

$( -3 , 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 86)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= {\left(t^{2} + t - 6\right)} y + t\hspace{2em}y( 2 )= 3$

$( -2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 87)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 6 )y'= {\left(t^{2} - 6 \, t + 9\right)} y\hspace{2em}y( 4 )= 0$

$( 3 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 88)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t )y'= 2 \, t^{3} + {\left(t^{2} - 3 \, t - 10\right)} y\hspace{2em}y( 6 )= 2$

$( 2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 89)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 4 \, t + 3 )y'= t^{2} + {\left(t^{2} - 2 \, t + 1\right)} y\hspace{2em}y( -2 )= 0$

$(-\infty, 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 90)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - t - 6 )y'= {\left(t^{2} - t - 20\right)} y - t\hspace{2em}y( -4 )= 0$

$(-\infty, -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 91)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 1 )y'= {\left(t^{2} - t\right)} y\hspace{2em}y( 5 )= 5$

$( 1 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 92)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 4 \, t )y'= 2 \, t^{2} + {\left(t^{2} + 7 \, t + 12\right)} y\hspace{2em}y( 3 )= -4$

$( 0 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 93)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 5 )y'= {\left(t^{2} - t - 6\right)} y\hspace{2em}y( -9 )= -3$

$(-\infty, -5 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 94)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t )y'= {\left(t^{2} - 4 \, t\right)} y - t\hspace{2em}y( -3 )= 3$

$(-\infty, 0 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 95)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 3 \, t - 4 )y'= -3 \, t^{2} + {\left(t^{2} + t - 12\right)} y\hspace{2em}y( -2 )= 3$

$( -4 , 1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 96)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} - 2 \, t - 3 )y'= -2 \, t^{2} + {\left(t^{2} - 2 \, t - 3\right)} y\hspace{2em}y( -5 )= 3$

$(-\infty, -1 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 97)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 7 \, t + 10 )y'= t^{2} + {\left(t^{2} - 6 \, t + 8\right)} y\hspace{2em}y( -3 )= -5$

$( -5 , -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 98)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 6 \, t + 8 )y'= {\left(t^{2} + 2 \, t\right)} y + t\hspace{2em}y( -3 )= 1$

$( -4 , -2 )$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 99)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 7 \, t + 10 )y'= {\left(t^{2} - 2 \, t - 3\right)} y - t\hspace{2em}y( 0 )= 4$

$( -2 ,\infty)$

## N1 - Existence and uniqueness. Apply an existence and uniqueness theorem to an IVP. (ver. 100)

Find the largest interval for which the IVP Existence and Uniqueness Theorem guarantees a unique solution for the following IVP.

$( t^{2} + 2 \, t - 3 )y'= {\left(t^{2} + 9 \, t + 20\right)} y + 3 \, t\hspace{2em}y( -5 )= -2$

$(-\infty, -3 )$